Saturday 22 November 2014

PHOTOPHOSPHORYLATION

 In the process of photosynthesis, the phosphorylation of ADP to form ATP using the energy of sunlight is called photophosphorylation. Only two sources of energy are available to living organisms: sunlight and reduction-oxidation (redox) reactions. All organisms produce ATP, which is the universal energy currency of life.
In photophosphorylation, light energy is used to create a high-energy electron donor and a lower-energy electron acceptor. Electrons then move spontaneously from donor to acceptor through an electron transport chain.


Cyclic photophosphorylation
Both forms of photophosphorylation occurs on the thylakoid membrane. In cyclic electron flow, the electron begins in a pigment complex called photosystem I, passes from the primary acceptor to ferredoxin, then to cytochrome b6f (a similar complex to that found in mitochondria), and then to plastocyanin before returning to chlorophyll. This transport chain produces a proton-motive force, pumping H+ ions across the membrane; this produces a concentration gradient that can be used to power ATP synthase during chemiosmosis. This pathway is known as cyclic photophosphorylation, and it produces neither O2 nor NADPH. Unlike non-cyclic photophosphorylation, NADP+ does not accept the electrons; they are instead sent back to cytochrome b6f complex.

In bacterial photosynthesis, a single photosystem is used, and therefore is involved in cyclic photophosphorylation. It is favoured in anaerobic conditions and conditions of high irradiance and CO2 compensation points.


Non-cyclic photophosphorylation
The other pathway, non-cyclic photophosphorylation, is a two-stage process involving two different chlorophyll photosystems. Being a light reaction, non-cyclic photophosphorylation occurs on thylakoid membranes inside chloroplasts. First, a water molecule is broken down into 2H+ + 1/2 O2 + 2e- by a process called photolysis (or light-splitting). The two electrons from the water molecule are kept in photosystem II, while the 2H+ and 1/2O2 are left out for further use. Then a photon is absorbed by chlorophyll pigments surrounding the reaction core center of the photosystem. The light excites the electrons of each pigment, causing a chain reaction that eventually transfers energy to the core of photosystem II, exciting the two electrons that are transferred to the primary electron acceptor, pheophytin. The deficit of electrons is replenished by taking electrons from another molecule of water. The electrons transfer from pheophytin to plastoquinone, which takes the 2e- from Pheophytin, and two H+ atoms from the stroma and forms PQH2, which later is broken into PQ, the 2e- is released to Cytochrome b6f complex and the two H+ ions are released into thylakoid lumen. The electrons then pass through the Cyt b6 and Cyt f. Then they are passed to plastocyanin, providing the energy for hydrogen ions (H+) to be pumped into the thylakoid space. This creates a gradient, making H+ ions flow back into the stroma of the chloroplast, providing the energy for the regeneration of ATP.

The photosystem II complex replaced its lost electrons from an external source; however, the two other electrons are not returned to photosystem II as they would in the analogous cyclic pathway. Instead, the still-excited electrons are transferred to a photosystem I complex, which boosts their energy level to a higher level using a second solar photon. The highly excited electrons are transferred to the acceptor molecule, but this time are passed on to an enzyme called Ferredoxin-NADP+ reductase which uses them to catalyse the reaction (as shown):

NADP+ + 2H+ + 2e- → NADPH + H+ zap
This consumes the H+ ions produced by the splitting of water, leading to a net production of 1/2O2, ATP, and NADPH+H+ with the consumption of solar photons and water.

The concentration of NADPH in the chloroplast may help regulate which pathway electrons take through the light reactions. When the chloroplast runs low on ATP for the Calvin cycle, NADPH will accumulate and the plant may shift from noncyclic to cyclic electron flow.

No comments:

Post a Comment

*********DOWNLOAD THIS VEDIO *********

*********DOWNLOAD THIS VEDIO *********
PLEASE FOLLOW THE IMAGE AND CLICK ON THE IMAGE