Friday 5 December 2014

Active Transport



Active transport is the movement of molecules across a cell membrane in the direction against their concentration gradient, i.e. moving from an area of lower concentration to an area of higher concentration. Active transport is usually associated with accumulating high concentrations of molecules that the cell needs, such as ions, glucose and amino acids. If the process uses chemical energy, such as from adenosine triphosphate (ATP), it is termed primary active transport. Secondary active transport involves the use of an electrochemical gradient. Active transport uses cellular energy, unlike passive transport, which does not use cellular energy. Active transport is a good example of a process for which cells require energy. Examples of active transport include the uptake of glucose in the intestines in humans and the uptake of mineral ions into root hair cells of plants.


Specialized transmembrane proteins recognize the substance and allow it access(or, in the case of secondary transport, expend energy on forcing it) to cross the membrane when it otherwise would not, either because it is one to which the phospholipid bilayer of the membrane is impermeable or because it is moved against the direction of the concentration gradient. The last case, known as primary active transport, and the proteins involved in it as pumps, normally uses the chemical energy of ATP. The other cases, which usually derive their energy through exploitation of an electrochemical gradient, are known as secondary active transport and involve pore-forming proteins that form channels through the cell membrane.

Sometimes the system transports one substance in one direction at the same time as cotransporting another substance in the other direction. This is called antiport. Symport is the name if two substrates are being transported in the same direction across the membrane. Antiport and symport are associated with secondary active transport, meaning that one of the two substances is transported in the direction of its concentration gradient utilizing the energy derived from the transport of second substance (mostly Na+, K+ or H+) down its concentration gradient.

Particles moving from areas of lower concentration to areas of higher concentration(i.e., in the opposite direction as, or against, the concentration gradient) require specific trans-membrane carrier proteins. These proteins have receptors that bind to specific molecules (e.g., glucose) and thus transport them into the cell. Because energy is required for this process, it is known as 'active' transport. Examples of active transport include the transportation of sodium out of the cell and potassium into the cell by the sodium-potassium pump. Active transport often takes place in the internal lining of the small intestine.

Plants need to absorb mineral salts from the soil or other sources, but these salts exist in very dilute solution. Active transport enables these cells to take up salts from this dilute solution against the direction of the concentration gradient.


Primary active transport

The action of the sodium-potassium pump is an example of primary active transport.

Primary active transport, also called direct active transport, directly uses metabolic energy to transport molecules across a membrane.

Most of the enzymes that perform this type of transport are transmembrane ATPases. A primary ATPase universal to all animal life is the sodium-potassium pump, which helps to maintain the cell potential. Other sources of energy for Primary active transport are redox energy and photon energy (light). An example of primary active transport using Redox energy is the mitochondrial electron transport chain that uses the reduction energy of NADH to move protons across the inner mitochondrial membrane against their concentration gradient. An example of primary active transport using light energy are the proteins involved in photosynthesis that use the energy of photons to create a proton gradient across the thylakoid membrane and also to create reduction power in the form of NADPH.



Model of active transport
ATP hydrolysis is used to transport hydrogen ions against the electrochemical gradient (from low to high hydrogen ion concentration). Phosphorylation of the carrier protein and the binding of a hydrogen ion induce a conformational (shape) change that drives the hydrogen ions to transport against the electrochemical gradient. Hydrolysis of the bound phosphate group and release of hydrogen ion then restores the carrier to its original conformation.

No comments:

Post a Comment

*********DOWNLOAD THIS VEDIO *********

*********DOWNLOAD THIS VEDIO *********
PLEASE FOLLOW THE IMAGE AND CLICK ON THE IMAGE