Friday, 5 December 2014

Tumor suppressor gene




A tumor suppressor gene, or antioncogene, is a gene that protects a cell from one step on the path to cancer. When this gene mutates to cause a loss or reduction in its function, the cell can progress to cancer, usually in combination with other genetic changes. The loss of these genes may be even more important than proto-oncogene/oncogene activation for the formation of many kinds of human cancer cells.Tumor suppressor genes can be grouped into categories including caretaker genes, gatekeeper genes, and landscaper genes; the classification schemes are evolving as medicine advances, learning from fields including molecular biology, genetics, and epigenetics.


Two-hit hypothesis

Models of tumour suppression
Unlike oncogenes, tumor suppressor genes generally follow the "two-hit hypothesis," which implies that both alleles that code for a particular protein must be affected before an effect is manifested. This is because if only one allele for the gene is damaged, the second can still produce the correct protein. In other words, mutant tumor suppressors' alleles are usually recessive whereas mutant oncogene alleles are typically dominant.

The two-hit hypothesis was first proposed by A.G. Knudson for cases of retinoblastoma Knudson observed that the age of onset of retinoblastoma followed 2nd order kinetics, implying that two independent genetic events were necessary. He recognized that this was consistent with a recessive mutation involving a single gene, but requiring biallelic mutation. Oncogene mutations, in contrast, generally involve a single allele because they are gain-of-function mutations.

There are exceptions to the "two-hit" rule for tumor suppressors, such as certain mutations in the p53 gene product. p53 mutations can function as a "dominant negative," meaning that a mutated p53 protein can prevent the function of normal protein from the un-mutated allele.

Other tumor-suppressor genes that are exceptions to the "two-hit" rule are those that exhibit haploinsufficiency, including PTCH in medulloblastoma and NF1 in neurofibroma. An example of this is the p27Kip1 cell-cycle inhibitor, in which mutation of a single allele causes increased carcinogen susceptibility.


Functions
Tumor-suppressor genes, or more precisely, the proteins they code for, either have a dampening or repressive effect on the regulation of the cell cycle or promote apoptosis, and sometimes do both. The functions of tumor-suppressor proteins fall into several categories including the following:
Repression of genes that are essential for the continuing of the cell cycle. If these genes are not expressed, the cell cycle does not continue, effectively inhibiting cell division.
Coupling the cell cycle to DNA damage. As long as there is damaged DNA in the cell, it should not divide. If the damage can be repaired, the cell cycle can continue.
If the damage cannot be repaired, the cell should initiate apoptosis (programmed cell death) to remove the threat it poses for the greater good of the organisms produced
Some proteins involved in cell adhesion prevent tumor cells from dispersing, block loss of contact inhibition, and inhibit metastasis. These proteins are known as metastasis suppressors.
DNA repair proteins are usually classified as tumor suppressors as well, as mutations in their genes increase the risk of cancer, for example mutations in HNPCC, MEN1 and BRCA. Furthermore, increased mutation rate from decreased DNA repair leads to increased inactivation of other tumor suppressors and activation of oncogenes.

No comments:

Post a Comment

*********DOWNLOAD THIS VEDIO *********

*********DOWNLOAD THIS VEDIO *********
PLEASE FOLLOW THE IMAGE AND CLICK ON THE IMAGE